Intersection modeling using a convergent scheme based on Hamilton-Jacobi equation
نویسنده
چکیده
This paper presents a convergent scheme for Hamilton-Jacobi (HJ) equations posed on a junction. The general aim of the approach is to develop a framework using similar tools to the variational principle in traffic theory to model intersections taking in account many incoming and outgoing roads. Then a time-explicit numerical scheme is proposed. It is based on the very classical Godunov scheme. The proposed model could be characterized as a pointwise model of intersection without any internal state. Moreover, our model respects the invariance principle. This scheme is applied to the cases of diverge junctions. The goal is to know how to manage the fluxes in order to maximize the flow through the junction. © 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Organizing Committee.
منابع مشابه
Convergent Semi-Lagrangian Methods for the Monge-Ampère Equation on Unstructured Grids
This paper is concerned with developing and analyzing convergent semi-Lagrangian methods for the fully nonlinear elliptic Monge–Ampère equation on general triangular grids. This is done by establishing an equivalent (in the viscosity sense) Hamilton–Jacobi–Bellman formulation of the Monge–Ampère equation. A significant benefit of the reformulation is the removal of the convexity constraint from...
متن کاملLax – Friedrichs sweeping scheme for static Hamilton – Jacobi equations q
We propose a simple, fast sweeping method based on the Lax–Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton–Jacobi equations in any number of spatial dimensions. By using the Lax–Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss–Seidel type nonlinear ite...
متن کاملNumerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation under stochastic volatility
1 We present efficient partial differential equation (PDE) methods for continuous time mean2 variance portfolio allocation problems when the underlying risky asset follows a stochastic 3 volatility process. The standard formulation for mean variance optimal portfolio allocation 4 problems gives rise to a two-dimensional non-linear Hamilton-Jacobi-Bellman (HJB) PDE. We 5 use a wide stencil metho...
متن کاملA Convergent Reinforcement Learning Algorithm in the Continuous Case: The Finite-Element Reinforcement Learning
This paper presents a direct reinforcement learning algorithm, called Finite-Element Reinforcement Learning, in the continuous case, i.e. continuous state-space and time. The evaluation of the value function enables the generation of an optimal policy for reinforcement control problems, such as target or obstacle problems, viability problems or optimization problems. We propose a continuous for...
متن کاملMultigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and HamiltonJacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped...
متن کامل